منابع مشابه
On quasi-zero divisor graphs of non-commutative rings
Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...
متن کاملZero Divisor Graphs of Commutative Rings
In this paper we will investigate the interactions between the zero divisor graph, the annihilator class graph, and the associate class graph of commutative rings. Acknowledgements: We would like to thank the Center for Applied Mathematics at the University of St. Thomas for funding our research. We would also like to thank Dr. Michael Axtell for his help and guidance, as well as Darrin Weber f...
متن کاملZero-dimensional Subrings of Commutative Rings
We consider various conditions of the sets of zero-dimensional, Artinian, and von Neumann regular subrings of a commutative ring. Section 1 treats questions of existence of such rings, Section 2 deals with the situation in which all subrings belong to one of the three classes, and Section 3 is concerned with the behavior of the sets under intersection. In Section 4 we give a brief survey of som...
متن کاملZero-Divisor Graph of Triangular Matrix Rings over Commutative Rings
Let R be a noncommutative ring. The zero-divisor graph of R, denoted by Γ(R), is the (directed) graph with vertices Z(R)∗ = Z(R)− {0}, the set of nonzero zero-divisors of R, and for distinct x, y ∈ Z(R)∗, there is an edge x → y if and only if xy = 0. In this paper we investigate the zero-divisor graph of triangular matrix rings over commutative rings. Mathematics Subject Classification: 16S70; ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1992
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1992-1095223-0